Sufficient conditions, fields and the calculus of variations
نویسنده
چکیده
Von der Bernoullischen Brachistochrone zum Kalibrator-Konzept. Ein historisher Abriß zur Entstehung der Feldtheorie in der Variationsrechnung (hinreichende Bedingungen in der Variationsrechnung) By Rüdiger Thiele. De Diversis Artibus: Collection de Travaux de l’Académie Internationale d’Histoire des Sciences, vol. 80. Turnhout, Belgium (Brepolis Publishers). 2007. ISBN 978-2-503-52438-2, 828 pp. €66.50
منابع مشابه
Bifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملNon-Newtonian Fuzzy numbers and related applications
Although there are many excellent ways presenting the principle of the classical calculus, the novel presentations probably leads most naturally to the development of the non-Newtonian calculus. The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Since this self-contained work is intended for a wide audience, inc...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملNON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کاملAn analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملStrong and Weak Augmentability in Calculus of Variations
In this paper we derive sufficient conditions for local optimality, for the Lagrange problem in the calculus of variations involving mixed equality constraints, by means of the notion of augmented Lagrangians. It is well-known that the standard necessary conditions for that problem can be easily obtained under the assumption of augmentability, instead of the usual one of normality. On the other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009